

State of California—Health and Human Services Agency

Department of Health Care Services

GAVIN NEWSOM GOVERNOR

DATE: January 11, 2021 N.L.: 01-0121

Supersedes: N.L.: 13-1120 Index: Benefits

TO: All County California Children's Services Program and Genetically

Handicapped Persons Program Administrators, Medical Consultants, and

Integrated Systems of Care Division Staff

SUBJECT: Cystic Fibrosis Transmembrane Conductance Regulator Modulator Drug

Therapies

PURPOSE

The purpose of this Numbered Letter (N.L.) is to update California Children's Services (CCS) Program and Genetically Handicapped Persons Program (GHPP) drug coverage for the treatment of cystic fibrosis (CF). CCS and GHPP previously authorized three cystic fibrosis transmembrane conductance regulator (CFTR) drug therapies to treat CF:

- 1. Ivacaftor (Kalydeco),
- 2. Lumacaftor/ivacaftor (Orkambi), and
- 3. Tezacaftor/ivacaftor and ivacaftor (Symdeko).

This N.L. establishes criteria for authorizing a fourth CF drug, elexacaftor/tezacaftor/ivacaftor and ivacaftor (Trikafta) and updates the newly approved expanded age for Ivacaftor.

The CCS Program publishes this N.L. under the program's authority to authorize services that are medically necessary to treat CCS-eligible conditions. 1,2,3

BACKGROUND

CF is a life-threatening autosomal recessive genetic disease that involves both exocrine and endocrine gland dysfunction. CF primarily affects the respiratory and digestive systems. CF is caused by mutations in the gene coding for the CFTR protein that result in decreased secretion of chloride and increased reabsorption of sodium and water across cells. Lack of CFTR function leads to viscous secretions, which are harder to clear, resulting in increased susceptibility to life threatening pulmonary infections. In addition,

Internet Address: www.dhcs.ca.gov

N.L.: 01-0121 Page 2 of 5 Janurary 11, 2021

the viscous secretions obstruct the pancreatic ducts and disrupt the process of digestion, leading to malabsorption of food.

Standard therapies for CF target amelioration of symptoms and prevention of infection. CFTR modulators are new therapies that improve chloride transport across the cell membrane by modulating the structure and function of the defective CFTR. There are over 1,700 known CFTR mutations. Mutation classes amenable to current CFTR therapies include gating mutations, conduction mutations, splice mutations, protein-processing mutations, and residual function mutations.

A patient's response to CFTR modulator therapy depends on the patient's CFTR mutation class. Certain mutations within the same mutation class respond to the same CFTR modulator therapy. Kalydeco (ivacaftor) was the initial CFTR modulator and acts as a potentiator by binding to the CFTR protein and increasing the time the channel is in the open position. Later CFTR modulators all include correctors, which help the CFTR protein fold correctly and reach the cell surface. Orkambi combined ivacaftor with lumacaftor. Symdeko combines ivacaftor with tezacaftor. The main difference between Orkambi and Symdeko is drug to drug interactions. Trikafta is a triple combination CFTR modulator drug, adding a new component elexacaftor to ivacaftor and tezacaftor. Elexacaftor works in synergy with tezacaftor, resulting in greater correction of the defective CFTR and substantial clinical benefit.

III. POLICY

A. Initial authorization

CCS independent counties and the Department of Health Care Services (DHCS) on behalf of CCS dependent counties and GHPP, shall authorize a six month treatment of Kalydeco, Orkambi, Symdeko, or Trikafta drug therapies if:

- 1. Client is under the care of a CCS-paneled pulmonologist at a CF CCS Special Care enter (SCC).
- 2. A CCS or GHPP client has been diagnosed with cystic fibrosis with a CFTR modulator responsive gene mutation.
- The SCC or pharmacy submits a service authorization request (SAR) to DHCS or a CCS independent county requesting approval to treat the client's CFTR gene mutation using Kalydeco, Orkambi, Symdeko, or Trikafta.
- 4. Along with the SAR, the provider submits the following information,
 - a. Notes from visit at CF special care center within the past 12 months, which include: pulmonary function status, measured by forced expiratory volume (FEV1), change in FEV1 prior to starting the prescribed CFTR modulator

N.L.: 01-0121 Page 3 of 5 Janurary 11, 2021

treatment, any treatment or admissions for exacerbations within the past year, current weight/Body mass index and change in nutritional status in past year,

- b. The client's CFTR drug therapy prescription.
- c. The client's genetic lab results.
- 5. The choice of specific CFTR modulator is based on the client's age and genetic profile. In cases where CFTR modulators are considered equivalent, CCS will authorize the less costly medically-necessary treatment.
 - Kalydeco is approved for clients over four months of age with responsive mutations.
 - b. Symdeko is the preferred treatment for all clients 6-12 years of age with a genetic profile responsive to Kalydeco and Symdeko, unless the provider submits evidence that the response to Symdeko has been suboptimal.
 - c. Orkambi is the preferred treatment for all clients 6-12 years of age with a genetic profile responsive to Orkambi and Symdeko, unless the provider submits evidence that the response to Orkambi has been suboptimal.
 - d. Trikafta is the preferred treatment for all clients at least 12 years of age with a responsive mutation.

B. Reauthorization:

- 1. For CFTR drug therapy reauthorizations, SCCs should demonstrate medical necessity by providing documentation that the client has responded to the CFTR therapy with stable or improved pulmonary function, stable or improved BMI, fewer symptoms, or fewer inpatient admissions.
- 2. Reauthorizations of CFTR drug therapies shall be for a period no longer than one year.
- C. Additional considerations for medical necessity determination:

For clients who do not meet the criteria described in sections III.A. or III.B., SCCs may demonstrate medical necessity by submitting any other clinical documentation and/or evidence that would support the initial or reauthorization of the client's CFTR drug therapy. SCCs or pharmacies should submit this documentation to the Integrated Systems of Care Division (ISCD) Medical Director or designee.

D. Whole Child Model (WCM) Counties:

N.L.: 01-0121 Page 4 of 5 Janurary 11, 2021

For CCS clients who are enrolled in a Medi-Cal managed care plan (MCP) and reside in a WCM county, the client's MCP shall be responsible for authorizing, coordinating, and covering CFTR drug therapies. MCPs operating in WCM counties should use the authorization guidelines described in this N.L., or utilize the MCP's existing CFTR drug therapy policies, whichever is less restrictive, until April 1, 2021.

IV. POLICY IMPLEMENTATION

- A. CFTR drug therapies are not included in Service Code Grouping authorizations.⁴ SCCs or pharmacies should submit a separate SAR and all supporting documentation in the following manner:
 - 1. For clients residing in an independent county, SARs should be submitted to the CCS county office.
 - For clients residing in a dependent county, SARs should be submitted to ISCD via email at CCSExpeditedReview@dhcs.ca.gov, or via secure RightFax at (916) 440-5306.
 - 3. For clients residing in a county covered by the WCM, SARs shall be submitted to, and processed by, the MCP until April 1, 2021.
- B. Clients transitioning from CCS to GHPP

SCCs treating clients who are transitioning from CCS to GHPP should:

- 1. Direct clients to complete GHPP enrollment form (DHCS 4000A).⁵
- Submit documentation that the client has responded to the CFTR therapy with stable or improved pulmonary function, stable or improved BMI, fewer symptoms, or fewer inpatient admissions to DHCS for continued approval of the client's CFTR drug therapy under GHPP.

If you have any questions regarding this N.L., please contact the ISCD Medical Director or designee via email at ISCD-MedicalPolicy@dhcs.ca.gov.

Beginning April 1, 2021, all requests for prior authorization of medications billed by NDC and dispensed by a Medi-Cal enrolled pharmacy provider, shall be sent to the Medi-Cal Rx vendor, Magellan Medicaid Administration, Inc. (Magellan). The Medi-Cal RX website provides guidance: https://medi-calrx.dhcs.ca.gov/home/.

Sincerely,

ORIGINAL SIGNED BY

Roy Schutzengel

N.L.: 01-0121 Page 5 of 5 Janurary 11, 2021

Medical Director Integrated Systems of Care Division

Attachment(s):

Attachment: CF Mutations Responsive to CFTR Modulator Therapy⁶

https://govt.westlaw.com/calregs/Document/I2F1A7E70D4B811DE8879F88E8B0DAAAE?viewType=FullText&originationContext=documenttoc&transitionType=CategoryPageItem&contextData=(sc.Default)&bhcp=1&ignorebhwarn=IgnoreWarns

https://govt.westlaw.com/calregs/Document/I2FDD8050D4B811DE8879F88E8B0DAAAE?viewType=FullText&originationContext=documenttoc&transitionType=StatuteNavigator&contextData=%28sc.Default%29

https://www.dhcs.ca.gov/services/ccs/cmsnet/Pages/SARTools.aspx#service

https://www.cff.org/Research/developing-New-Treatments/CFTR-Modulator-Types/

¹ 22 Cal. Code Regs. § 41515.1 et. seq. Determination of Medical Eligibility <a href="https://govt.westlaw.com/calregs/Document/128E30090D4B811DE8879F88E8B0DAAAE?viewType=FullText&originationContext=documenttoc&transitionType=CategoryPageItem&contextData=%28sc.Default%29

² 22 Cal. Code Regs. § 41700 Availability

³ 22 Cal. Code Regs. § 41740 Eligibility for Treatment Services

⁴ Service Authorization Request Tools

⁵ Genetically Handicapped Persons Program (GHPP) Application/Referral Form https://www.dhcs.ca.gov/services/ghpp/Pages/Apply.aspx

⁶ Official Listing of Mutations

Kalydeco (ivacaftor) is indicated for clients with CF ages six months and older who have one copy of the F508del protein processing mutation and at least at least one of the following mutations:

Gating Mutations

G178R	G1244E	S549R
G551D	G1349D	S1251N
G551S	S549N	S1255P

Residual Function Mutations

A455E	E56K	R74W
A1067T	E193K	R117C
D110E	F1052V	R347H
D110H	F1074L	R352Q
D579G	K1060T	R1070W
D1152H	L206W	S945L
D1270N	P67L	S977F
G1069R	R1070Q	

Splice Mutations

711+3A→G	3272-26A→G	E831X
2789+5G→A	3849+10kbC→T	

Conduction Mutation

R117H

January 11, 2021 Page 1 of 4

Orkambi (lumacaftor/ivacaftor) is indicated for clients ages 2 years and older who have two copies of the F508del protein processing mutation.

Symdeko (tezacaftor/ivacaftor and ivacaftor) is indicated for clients ages 6 years and older who have two copies of the F508del protein processing mutation or one F508del mutation and at least one of the following mutations:

Residual Function Mutations

A455E	E56K	R74W
A1067T	E193K	R117C
D110E	F1052V	R347H
D110H	F1074L	R352Q
D579G	K1060T	R1070W
D1152H	L206W	S945L
D1270N	P67L	S977F

Splice Mutations

711+3A→G	3272-26A→G	E831X
2789+5G→A	3849+10kbC→T	

Trikafta (elexacaftor, tezacaftor and ivacaftor; ivacaftor) is indicated for clients ages 12 years and older who have at least one copy of the F508del mutation.

On December 21, 2020 the FDA approved new mutations that can be treated by each of the CFTR Modulator Therapy Drugs. The following is a listing of all the mutations approved for each drug.

List of CFTR Gene Mutations that are Responsive to Trikafta

(elexacaftor/tezacaftor/ivacaftor and ivacaftor)
Bolded mutations are approved effective 12/21/2020

٦	Table 1: List of CFTR Gene Mutations That Are Responsive to Trikafta					
3141del9	E822K	G1069R	L967S	R117L	S912L	
546insCTA	F191V	G1244E	L997F	R117P	S945L	
A46D	F311del	G1249R	L1077P	R170H	S977F	
A120T	F311L	G1349D	L1324P	R258G	S1159F	
A234D	F508C	H139R	L1335P	R334L	S1159P	
A349V	F508C;S1251N†	H199Y	L1480P	R334Q	S1251N	
A455E	F508del*	H939R	M152V	R347H	S1255P	
A554E	F575Y	H1054D	M265R	R347L	T338I	
A1006E	F1016S	H1085P	M952I	R347P	T1036N	
A1067T	F1052V	H1085R	M952T	R352Q	T1053I	
D110E	F1074L	H1375P	M1101K	R352W	V201M	
D110H	F1099L	I148T	P5L	R553Q	V232D	

January 11, 2021 Page 2 of 4

D192G	G27R	I175V	P67L	R668C	V456A
D443Y	G85E	1336K	P205S	R751L	V456F
D443Y;G576A;R668C†	G126D	1502T	P574H	R792G	V562I
D579G	G178E	I601F	Q98R	R933G	V754M
D614G	G178R	I618T	Q237E	R1066H	V1153E
D836Y	G194R	1807M	Q237H	R1070Q	V1240G
D924N	G194V	1980K	Q359R	R1070W	V1293G
D979V	G314E	I1027T	Q1291R	R1162L	W361R
D1152H	G463V	I1139V	R31L	R1283M	W1098C
D1270N	G480C	I1269N	R74Q	R1283S	W1282R
E56K	G551D	I1366N	R74W	S13F	Y109N
E60K	G551S	K1060T	R74W;D1270N†	S341P	Y161D
E92K	G576A	L15P	R74W;V201M†	S364P	Y161S
E116K	G576A;R668C†	L165S	R74W;V201M;D1270N†	S492F	Y563N
E193K	G622D	L206W	R75Q	S549N	Y1014C
E403D	G628R	L320V	R117C	S549R	Y1032C
E474K	G970D	L346P	R117G	S589N	
E588V	G1061R	L453S	R117H	S737F	

^{*}F508del is a responsive CFTR mutation based on both clinical and in vitro data [see Clinical Studies (14) in the TRIKAFTA full Prescribing Information (PI)].

†Complex/compound mutations where a single allele of the *CFTR* gene has multiple mutations; these exist independent of the presence of mutations on the other allele.

List of CFTR Gene Mutations that are Responsive to Symdeko

(tezacaftor/ivacaftor and ivacaftor)

Bolded mutations are approved effective 12/21/2020

Table 2: List of CFTR	Gene Mutations 7	hat Produce CF	TR Protein and Are Respo	onsive to S	ymdeko
546insCTA	E92K	G576A	L346P	R117G	S589N
711+3A→G*	E116K	G576A;R668C†	L967S	R117H	S737F
2789+5G→A*	E193K	G622D	L997F	R117L	S912L
<i>3272-26A→G</i> *	E403D	G970D	L1324P	R117P	S945L*
3849+10kbC→T*	E588V	G1069R	L1335P	R170H	S977F*
A120T	E822K	G1244E	L1480P	R258G	S1159F
A234D	E831X	G1249R	M152V	R334L	S1159P
A349V	F191V	G1349D	M265R	R334Q	S1251N
A455E*	F311del	H939R	M952I	R347H*	S1255P
A554E	F311L	H1054D	M952T	R347L	T338I
A1006E	F508C	H1375P	P5L	R347P	T1036N
A1067T	F508C;S1251N†	I148T	P67L*	R352Q*	T1053I
D110E	F508del^	1175V	P205S	R352W	V201M
D110H*	F575Y	1336K	Q98R	R553Q	V232D
D192G	F1016S	1601F	Q237E	R668C	V562I
D443Y	F1052V	I618T	Q237H	R751L	V754M
D443Y;G576A;R668C†	F1074L	1807M	Q359R	R792G	V1153E
D579G*	F1099L	1980K	Q1291R	R933G	V1240G
D614G	G126D	I1027T	R31L	R1066H	V1293G

January 11, 2021 Page 3 of 4

D836Y	G178E	I1139V	R74Q	R1070Q	W1282R
D924N	G178R	I1269N	R74W	R1070W*	Y109N
D979V	G194R	I1366N	R74W;D1270N†	R1162L	Y161S
D1152H*	G194V	K1060T	R74W;V201M†	R1283M	Y1014C
D1270N	G314E	L15P	R74W;V201M;D1270N†	R1283S	Y1032C
E56K	G551D	L206W*	R75Q	S549N	
E60K	G551S	L320V	R117C*	S549R	

^{*}Clinical data for these mutations in Clinical Studies [see Clinical Studies (14.1 and 14.2) in the SYMDEKO full PI].

List of CFTR Gene Mutations that are Responsive to Kalydeco (ivacaftor)

Bolded mutations are approved effective 12/21/2020

Table 3: List o			ce CFTR Protein and	
Table 5. List c	or or the oche muta	Kalydeco		Are responsive to
711+3A→G*	F311del	I148T	R75Q	S589N
2789+5G→A*	F311L	I175V	R117C*	S737F
3272-26A→G*	F508C	1807M	R117G	S945L*
3849+10kbC→T*	F508C;S1251N†	I1027T	R117H*	S977F*
A120T	F1052V	I1139V	R117L	S1159F
A234D	F1074L	K1060T	R117P	S1159P
A349V	G178E	L206W*	R170H	S1251N*
A455E*	G178R*	L320V	R347H*	S1255P*
A1067T	G194R	L967S	R347L	T338I
D110E	G314E	L997F	R352Q*	T1053I
D110H	G551D*	L1480P	R553Q	V232D
D192G	G551S*	M152V	R668C	V562I
D579G*	G576A	M952I	R792G	V754M
D924N	G970D	M952T	R933G	V1293G
D1152H*	G1069R	P67L*	R1070Q	W1282R
D1270N	G1244E*	Q237E	R1070W*	Y1014C
E56K	G1249R	Q237H	R1162L	Y1032C
E193K	G1349D*	Q359R	R1283M	
E822K	H939R	Q1291R	S549N*	
E831X*	H1375P	R74W	S549R*	

^{*}Clinical data exist for these mutations [see Clinical Studies (14) in the KALYDECO full PI].

January 11, 2021 Page 4 of 4

[^]A patient must have 2 copies of the *F508del* mutation or at least 1 copy of a responsive mutation presented in Table 2 to be indicated.

[†]Complex/compound mutations where a single allele of the *CFTR* gene has multiple mutations; these exist independent of the presence of mutations on the other allele.

[†]Complex/compound mutations where a single allele of the *CFTR* gene has multiple mutations; these exist independent of the presence of mutations on the other allele.